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This note deals with what is today called P61ya Enumeration Theory, i.e. the 
body of  material centered about P61ya's famous theorem [1] and its generalizations 
by de Bruijn [2], Harary [3, 4] and many others. More specifically, it is concerned 
with an extension of  the power group enumeration theorem that was introduced 
by de Bruijn [2] and further elaborated by Harary and Palmer [3], who coined 
its name as well. P61ya's theorem enumerates the orbits of mappings between 
finite sets with respect to a group of permutations on their domain. This setting 
is generalized in power group enumeration by introducing, besides the domain 
group, also a group of permutations on the range, which then additionally reduces 
the number of  distinct patterns (orbits). However, this generalization is of a very 
special type, since the groups of domain and range act jointly but independently 
of each other, i.e. there is no correlation between the symmetries of  domain and 
range. From the viewpoint of a "chemical combinatorics" it is rather more natural 
to consider, instead of two such permutation groups, a single point group, say, 
that acts on the domain and on the range simultaneously. As a consequence, if 
there is a non-trivial action on both, domain and range, the possibility of some 
correlation between these actions emerges quite naturally. The present paper 

* This paper is dedicated to Professor Dr. Ernst Ruch on the occasion of this 65th birthday 
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proposes an extension of  power group enumeration that includes correlation of 
symmetries. Moreover it proposes to relax the restriction on weight functions to 
be constant on any orbit, which is demanded by the "weighted version" of the 
Cauchy-Frobenius Lemma 1. Modern presentations of P61ya Enumeration Theory 
such as [6, 7, 8, 9] almost inevitably employ this version in order to derive 
generating functions for the numbers of  orbits with various prescribed properties. 
While the restriction mentioned above is not operative in the case of  pure domain 
action, in power group enumeration it has somewhat unpleasant consequences 
by lumping together objects that one would like to consider separately. We offer 
an extension of  the weighted Cauchy-Frobenius Lemma that admits a much 
larger class of  weight functions. The generating functions that are obtained in 
this manner  provide more specific results concerning the enumeration of  orbits 
by weight, as compared with the conventional approach. 

Both these ideas of  introducing correlation between group actions on domain 
and range, and of abandoning constant weight functions are occasionally men- 
tioned in the literature or used for another purpose, as for instance in [10] and 
[11]. But to the present author's knowledge they were never implemented in the 
body of  power group enumeration, which then is the intention of this note. 

Let us begin with a summary of the basic facts in P61ya Enumeration Theory, 
presented from the viewpoint of a single group acting on mappings by acting on 
their domain or both, on domain and range. 

A finite group G is said to act on a finite set M if the elements of G act as 
permutations on M, more explicitly, if to each g ~ G a permutation o-g E Sym (M)  
is associated such that the mapping tr: g~--~o'g is a homomorphism from G into 
Sym (M) ,  the symmetric group of M. That is 

O'gO'g, ~ -  O'gg, for any g, g' ~ G. ( 1 ) 

Synonymously, M affords a permutation representation of  G, or M is a G-set. 
The action of the group G induces an equivalence relation on the set M, 

m'-mC~3g~ G: m' =O'g(m), (2) 

due to which this set decomposes into orbits, i.e. equivalence classes under group 
action. For m ~ M, the symbol O~(m) will denote the orbit that contains m, so 

O~(m) := {m'=  o~(m)lg c G}. (3) 

The action of G associates to each m ~ M a subgroup of  G, its stabilizer 

G,, := {g ~ Glo'g(m) = m}, (4) 

which is related to the orbit O~(m) by the fact that the orbit length IOc(m)l, i.e. 
the number of  elements in the orbit, is given by the stabilizer index. 

i O ~ ( m ) l -  - [G[ 
IG,~I " (5) 

1 Which is usually, but erroneously, attributed to Burnside, cf. [5] 
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By the dual construction, a subset of  M is assigned to each group element g ~ G: 
the set Mg of its fixed points, 

Mg := {m ~ M[crg(m) = m}. (6) 

The numbers of  fixed points, IMgh provide the key to the enumeration of orbits 
through the 

Cauchy-Frobenius lemma. The number of orbits of a G-set equals the average 
number of fixed points of the group elements. 

1 
no. of orbits = ~-~ g~O IM~I. (7) 

Given some G-sets as primary objects, various more complicated G-sets can be 
built up from them by means of cartesian products, mappings etc. P61ya's theory 
[1] deals with one such construction: with a group acting on mappings by acting 
on their domain. More explicitly, it starts from a G-set P and from another finite 
set L (without any group action on it), and next considers the set L e of  all 
mappings from P to L. 

L p := {~lq~ : P--) L}. (8) 

Let 7rg ~ Sym(P)  denote the permutation by which g ~ G acts on P. Then 

g: ~--~ ~ ~ 7rg I I 

defines an action of G on L P. Here the symbol o is used for the composition of 
mappings,  that is, for a mapping ~ and a permutation ~r, ~ o ~r denotes the 
mappings that takes i e P into ~(~r(i)). 

Alternatively, a group may act on mappings by acting on their range. So let L 
be a G-set, with Ag ~ Sym (L) representing g c G, while there is no group action 
on the domain P. In this case 

g: ~ ~-~ Ago ~0 II  

defines another  action of G on LP--which  is, however, not so interesting on its 
own right but rather in combination with the previous one. So let both, P and 
L, be G-sets on which g c G acts as 7rg and Ag, respectively. Then G acts on L P 
by acting simultaneously on P and on L according to 

g: ~-~Ag o ~ o ~r~ 1. I I I  

G-sets of  this type were first discussed by de Bruijn [2] who generalized P61ya's 
theory by introducing besides a group of permutations on the domain a second 
group acting on the range. This amounts to restricting the type I I I  representations 
to groups which are direct products G = A x B of two g roups  A and B, where A 
acts exclusively on L while B acts on P only, i.e. we have 

A ( a , b )  = A a  
for all pairs (a, b) ~ A • B, (9) 

7r(a,b ) = ,l.1" b 
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by which the group action on mappings reduces to 

(a, b) : ~p ~-*ha ~ ~0 o Ir~ 1. (10) 

Looking at A and B as representing symmetries of range and domain, respectively, 
there is no correlation between these symmetries in the direct product A • B, 
since any a ~ A combines with any b 6 B into an element (a, b) of  the "similarity 
group" G = A x B. In chemical applications, however, one often encounters a 
situation where the symmetries of range and domain are correlated, as e.g. when 
dealing with derivatives of an achiral parent compound where the substituents 
are allowed to be chiral [12]. A short digression to this subject may be appropriate 
since counting derivatives of  symmetrical parent compounds is the standard 
application of  P61ya Enumeration Theory to "chemical combinatorics", which 
we also had in mind when choosing the letters P and L to denote domain and 
range of  mappings instead of D and R. 

For this purpose, let P = {1, 2, 3 , . . .}  denumerate the positions (sites), where 
substitution may take place in a given parent compound, and let L = {A, B, C, . . .}  
be a collection of  ligand types (types of  substituents). Mappings from P to L 
obviously represent distributions of  ligands of  types in L over the sites of  the 
molecular skeleton in question, if q~(i) = X is taken to say that there is a ligand 
of type X at site i. Let the skeleton have a non-trivial symmetry, and denote by 
G the corresponding point-symmetry group, by R its subgroup of  proper  rotations, 
and by S the coset of improper rotations and reflections. Of course, S need not 
exist, namely if the skeleton is chiral. In this setting, one readily identifies 
symmetry equivalent distributions, that are mutually transformed by proper  
rotations r ~ R, to represent the same derivative. If, moreover, enantiomers need 
not be distinguished, mutual transforms by improper rotations s ~ S are identified 
as well. Evidently, covering operations of  the (spatially fixed) skeleton permute 
the distributions. Moreover, on any distribution, the effect of two consecutive 
covering operations is the same as that of  their product (by the very definition 
of  composition for point-symmetry operations). So the group G acts on the set 
L P of  distributions, and derivatives are orbits with respect to its subgroup R, 
while a G-orbit represents either a mirror image pair of chiral derivatives or an 
achiral compound. 

There are now several possibilities, of  increasing complexity, of  how this action 
looks like in detail. First and foremost, a covering operation acts on distributions 
by removing the ligands from their original positions to other sites, i.e. by 
permuting the positions of  the ligands. Note that this site permutation is the same 
for all distributions, irrespectively of the kind of ligands that are moved. If  the 
ligand symmetry is sufficiently high, this rearrangement will be the only effect. 
Otherwise it may happen that a covering operation, besides moving the ligands, 
also changes their types. For instance, improper rotations and reflections take 
any chiral ligand into its mirror image--wherever it is situated. Finally, and most 
awkwardly to deal with, the fate of a ligand may depend on its initial and final 
position, as will be the case if a ligand type has to be considered a chiral one at 
some sites and an achiral one at others. Let us now translate these descriptions 
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of covering operations acting on distributions into definitions of how a group G 
acts on a set L v of mappings. This is conveniently done by describing the image 
~0' of a general mapping ~ ~ L v under a general group element g ~ G. 

First, G acts through site permutations exclusively. So there is a permutation 
representation of G on P, g ~ %, and g ~ G acts on ~o ~ L P through taking to 
site % ( 0  whatever ligand type X ~ L is assigned to i r P by the mapping ~o. The 
image ~0' is therefore given by ~o'(%(i))  = X if ~o(i) = X,  equivalently 

,p ' ( i )  = ~ ( ' G ' ( i ) ) ,  or 
(11) 

~ ' =  ~ o Ir,~ l 

as a shorthand notation. Second, G acts on the ligands as well, irrespectively of 
their position. So a permutation representation of G on L, g~-*Xg, is operative 
in addition, and g ~ G acts on ~ ~ L F by taking to ~g(i) the image X = ~(i) of 
i under  ~o, while transforming it into Ag(X). This amounts to  r = Ag(X) 
if r  = X, equivalently, 

r or 
-, (12) 

tp'---- Ag o ~p o ~g . 

Third, and last, there is an individual 2 permutation representation of G on L, 
g~--~ A~g ~ for any site i~ P, and g~ G takes X = ~o(i) into X~g~ = ~o'(%(i)), i.e. 

~0'(i) -- A ~~ (1rg'(i))). (13) 

The most simple action next to that by pure site permutation occurs in the case 
of derivatives of an achiral parent compound, where the ligands are allowed to 
be chiral (but sufficiently symmetric with respect to proper  rotations). The proper 
rotations r ~ R exclusively permute the positions, while improper rotations and 
reflections s ~ S moreover take any chiral ligand into its mirror image. That is, 
the point-symmetry group G acts as follows 

g: ~o ~--~ Ago ~ o Ir~', (14) 

where the % are the usual site permutations, and where Ar = e, the identity 
permutation, for all r ~ R, and As = r ,  the product of transpositions ( X X * )  of 
mirror image ligand types X and X*, for all s ~ S. Of course we assume that X* 
is in L if X is. 

The two permutation groups 

r = {e, r} (15) 

I I = { % l g e  G} 

represent symmetries of the ligand collection, and of the molecular skeleton, 
respectively. Their uncorrelated combination would be the direct product group 

r •  = {(r ' ,  ~rg)]n = 1,2; g e G}, (16) 

2 The same for all sites in an orbit of P 
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acting o n  L P according to 

(r", Irg): ~o ~-~ T" o cp o r 1. (17) 

The relevant "similarity group" is, however, a subgroup of F • II, that arises from 
introducing some correlation between the direct factors F and II, namely by 
eliminating the pairs (e, r and (r, ~r,). 

As a final remark, correlation of symmetries was first implemented in the double 
coset approach to permutational isomerism at the occasion of dealing with chiral 
ligands [12]. The consequence then is, that double cosets are replaced by classes 
of a more general type, the "bilateral classes" introduced in [13], cf. [14] for a 
recent review. 

For evaluating the Cauchy-Frobenius Lemma on the number of orbits, in a 
permutation representation of one of the types discussed above, the numbers of 
fixed points of group elements are needed. When G acts on L P via acting on P, 

g:  ~V--> ~ o 3Tg l, (18) 

a map ~o is invariant under g if and only if ~o is constant on each cyclic factor of 
the permutation ~-g. Hence there are 

ILlC~, ) (19) 

fixed points of g c G in L P, where c(Tr,) denotes the number of cycles that appear 
in the disjoint cycle decomposition of ~-g (including the cycles of length one, 
which are usually omitted!) As a result, the number of G-orbits in L P is 

1 

When G acts on mappings by simultaneously acting on domain and range, 

g: ~o ~-->Ag o ~p o ~r~ 1 , (21) 

the condition for a map to be a fixed point of some group element is slightly 
more involved: ~o is invariant under g if and only if ~o maps k-cycles of It, to 
fixed points of A gk, the k-th power of Ag, in a coherent fashion. Explicitely, let 
i E P be contained in a k-cycle (cycle of  length k) of ~-g, and let q~(i)= X. Then 
X has to be a fixed point of A~, A~(X) = X. Moreover, i f j  appears in the same 
cycle, at the vth position after i, say, i.e. i f j  = ~-~(i), then ~o(j) = A~(X). It follows 
that g c G has 

II c,(A~) ~k~%~ (22) 

fixed points in L ~, where Ok( " ) denotes the number of k-cycles in the cycle 
decomposition of the permutation in question. Therefore, the number of orbits 
is given by 

1 
]G] g~E k-~, [[ cl(A~)Ck(~')" (23) 
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In the case of  type I representations, fairly more detailed information can be 
obtained from P61ya's theorem. There, the set L e is subdivided into classes of  
mappings having the same content, which are then separately decomposed into 
orbits. The content of  a mapping assigns to each element of  the range its number  
preimages in the domain. Formally, for a mapping r from P to L, its content is 
a function J~ from L to the non-negative integers, defined by putting 

J~(X)  =no .  of  i~ P such that ~ ( i ) = X  (24) 

for any X ~ L. In the case of mappings from the set of  substitution positions of  
a parent  compound to a set of  substituent types, the content is just the same as 
the gross formula of  derivatives. Evidently, the content of mappings from P to 
L is invariant under site permutations ~r ~ Sym (P).  Hence it is, of  course, invariant 
under the action of any group G via site permutations. Therefore, all the subsets 
of  L P for the various possible contents are G-subsets, i.e. they are closed with 
respect to the action of G, which makes them G-sets themselves. P61ya's theorem 
then gives the number  of  orbits for any such G-subset in terms of a single 
generating function. 

Theorem (P61ya). Let a group G act on L P via site permutations, and let J be a 
content 3. Then the number of orbits of  mappings with content J coincides with the 
coefficient of the monomial 

1 (x~ \%~%~ xI~LX j~x' in thepolynomial IG I g ~  k~>_ 1 L X  k) , 

where the same symbols are used to denote ligand types as welt as "' indeterminates'" 
assigned to them. 

The customary derivation of this famous result employs the so-called "weighted" 
version of the Cauchy-Frobenius  Lemma. For this purpose, the notion of a weight 
function w on a set M is introduced as a mapping w: M ~ W from M to some 
set W of  weights. We shall wish to add weights as well as to divide them by 
positive integers. So W has to be closed with respect to addition and multiplication 
with positive rationals. In practice, W usually is a ring of polynomials with 
rational coefficients. Now suppose that M is a G-set, and let w: M ~  W be a 
weight function that is constant on any orbit of  M. Then it makes sense to call 
the constant value of the elements in an orbit O the weight w(O) of this orbit. 
In this setting the Cauchy-Frobenius  Lemma is readily generalized to the 

Lemma (C.-F., weighted). The sum of the orbit weights is the same as the average 
weight sum of fixed points, 

1 

mcM~ 

3 I.e. a function J from L to the non-negative integers, such that ~.x~t J(X) = IPI 
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Specifying to M = L P, and to the weight function 

w(~o)= N ~o(i)= I~ x~(X), (25) 
i E P  X ~ L  

that assigns to a map the product of its images, including multiplicity, results in 
the following expression for the weight sum of fixed points of g ~ G, acting 
through a site permutation ~-g. 

kI]>_I (x~L Xk) c~(%) (26) 

On the other hand, obviously 

w(O) =Z n.1 1-[ X j(x), (27) 
0 J X e L  

where the right hand sum runs over all the possible contents functions, and with 
nj denoting the number of orbits of mappings with content J. The P61ya Theorem 
then follows immediately. 

Somewhat more generally, one considers weight functions on L e that arise from 
weight functions on L by assigning to a map 9: P ~  L the product of weights of 
its images. Explicitly, let to be a weight function on L, and let .~ denote the 
weight to(X) of X ~ L in order to simplify the notation. Assuming that these 
objects can be added and multiplied commutatively, to is used to construct a 
weight function w on mappings, 

^ ~ ( x )  w(~o) = l-I ~ ' ~ =  H X . (28) 
i ~ P  x c L  

Then P61ya's theorem takes the slightly more general form of 

1 
(29) 

Following de Bruijn [2, 6], we may now proceed in exactly the same manner in 
order to derive analogous generating functions for orbit numbers when the group 
G acts on L as well. However, the weighted Cauchy-Frobenius Lemma presup- 
poses weight functions to be constant on the orbits of mappings. So, if we stick 
to the multiplicative weight functions (28)--which is usually done for several 
reasons4----w being constant on orbits of mappings requires to to be constant on 
orbits of ligand types. So we must have Y= X whenever Y= Ag(X) for some 
g ~ G. As a consequence, the resulting generating function does not provide the 
same detail of information as P61ya's. This will be apparent from the example 
below. Summing up the fixed point weights and invoking the weighted Cauchy- 

4 Multiplicative weight functions provide useful classifications of mappings, and they are nicely 
handled in computations 



P61ya enumeration theory 99 

Frobenius Lemma results in the following 

Theorem (de Bruijn) 

1 t 
As noted before, the original result of de Bruijn s is restricted to direct product 
groups G = A x B, where A acts on L while B acts on P. 

Let us apply this result to the derivatives of an achiral parent compound, where 
the ligands are allowed to be chiral, that were so extensively discussed before. 
Then G is again the full point symmetry group of the skeleton in question, R 
and S denote its subgroup of proper rotations, and the coset of improper rotations 
and reflections, respectively. G acts on L P by 

g: q~--> Xg o ~p o r ~, (30) 

where ;tr = e, the identity permutation, for proper rotations r ~ R, and A, = z, the 
overall inversion of  chiral ligand types, for the improper symmetry operations 
s ~ S. R-orbits of L P correspond to derivatives, while G-orbits either represent 
mirror image pairs of chiral derivatives or single achiral compounds, depending 
on whether both the two R-orbits that are contained in any G-orbit, are disjoint 
or identical. Let Ai, A 2 , . . . ,  A i , . . .  denote the types of achiral ligands, while 
C1, C~*, C2, C*, . . . ,  Cj, C-*j,... denote the chiral ones, where Cj, C* is a mirror 
image pair. Then 

7=1] (c cD. (31) 
J 

The weight function to on L, t o (X)=  X, has to take the same value for mirror 
images. So we put 

C'~'= Cj"'. (32) 

The right hand side of  the expression in de Bruijn's theorem then takes the form 

s ~ S  k ~ 2  j k--1 

Let a~, a2,- �9  ai . . . .  , and 71, Y2,-. . ,  Yi,.- �9 be non-negative integers adding up 
to IP[. Then the coefficient of the monomial 

1-[ A•, I-I CfJ (34) 
i j 

in the previous expression (33), after performing all these multiplications and 
collecting terms, gives the number of achiral derivatives and of mirror image 

5 Called Power Group Enumeration _Theorem by Harary and Palmer 
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chiral pairs, containing a; ligands of  type A; and yj ligands of  type Cj or C*. 
This type of  content, however, lumps together orbit numbers that one should 
like to (and can, in fact!) have separately. Consider, for a simple example, only 
one type of  chiral ligand C and its mirror image C* at four sites. So ai = yj = 0 
except for y~ = 4, say. The weight ~4 comprises five distinct gross formulas 

C 4, C3C *, C2C *2, CC :1':3, C .4. (35) 

However, the mappings of  content C2C .2 constitute a proper  G-set by themselves. 
Likewise, the mappings of  content C3C * form a G-set together with those of  
content CC .3, and the same applies to the contents C 4, C .4. In other words, 
racemic (i.e. achiral) gross formulas and enantiomeric (i.e. mirror image chiral) 
pairs of  gross formulas define proper  G-sets of which one should like to know 
the orbit number individually. 

In this simple case, these numbers are readily obtained as follows. If  a derivative 
is achiral, its gross formula is necessarily racemic. So we have 

ZG( C 4 / C  $4) = z R ( C 4) : z R (C$4), 

z~ ( C 3 C*/  CC'3) = ZR ( C 3 C*) = ZR (CC'3),  (36) 

where za( �9 ) denotes the number of G-orbits for the content(s) in question, and 
the same meaning of  ZR( " ). But we still need 

zc (C2C .2) = ? (37) 

Now we use the number z~(C4), that the generating function (33) gives us, and 
from the trivial fact that 

ZG ( ~ 4 )  .~- ZG (C4/C84)  Jr 7_(3, ( C 3 C 8 / C C  :~3 ) "}- z G ( C 2 C  82 ) (38) 

the missing orbit number is obtained as 

z~(C2C .2) = z6(C 4) - ZR(C 4) -- zR(C3C*). (39) 

This method of  recovering the missing information by means of  restricting the 
group action to subgroups, however, gets quite cumbersome in more complicated 
cases. So it would certainly be better if all these numbers could be obtained from 
a single generating function like in P61ya's theorem. This can be done by relaxing 
the restriction to constant weight functions. 

For weight functions that are constant on the orbits of  a G-set M, the weighted 
Cauchy-Frobenius Lemma states that 

1 
~o w ( O ) = - -  Y~ Y, w(m), (40) 

where we have used the shorthand notation grn for the image o-g(rn) of m 6 M 
under g c G. Suppose now that w is not constant on the orbits O. Then, what 
replaces the left hand side in (40)? Let A denote (what W denoted before; reader, 
please forgive!) the range of w, i.e. the set of  weights, and for 8 ~ A denote by 
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M (8) its fibre in M, that is 

M (~} := {m ~ MIw(m) = 8}. (41) 

Then the average sum of fixed point weights turns out to be 

1 1 
2 ~ w ( m ) =  ~_ E E E IM  >I, (42) 

w(m)=~ 

where MCg ~) denotes the set of  fixed points of  g in the fibre M ~ So the left 
hand side of  what replaces (40) is a linear combination of the weights, with the 
coefficient of  8 ~ A given by the average number  of  fixed points in M ~}. In case 
that w is constant on the orbits of M, the subsets M {~) are G-sets, each, to which 
the Cauchy-Frobenius Lemma can be applied, resulting in 

1 
Z IM~)I = no. of  orbits in M (~). (43) IGI ~cc 

From this, the weighted Cauchy-Frobenius  Lemma is recovered. But what is the 
average number  of  fixed points in an arbitrary subset N of M, which is then not 
a G-set, as a rule? 

1 _ _ x ~ l  IG, I 
IGI.~Z IN~I=IGI.~NIG.I=.~NZ IGI 

1 INnOI  
= E - E (44) 

Here G,  denotes the stabilizer of  n, and the first line is due to the fact that both 
the first two sums E IN.I and ~, IG.I count the number  of  pairs (g, n) such that 
gn = n. The final sum runs over the orbits in GIN], the closure of  N with respect 
to G. In other words, G[N] is the smallest G-subset of M wherein N is contained. 

Suppose now that N contains the same fraction of all the orbits in G[N], that is 

INnOI 
[ O ~  - const, for any O in G[N]. (45) 

Then we have 

INnOI 
~. - - =  const, xno.  of orbits in G[N]. (46) 

o_~EN1 IOI 

For n ~ N, the fraction referring to the orbit O~(n) is given by 

I N n  O~(n)] 1 
Io~(n)l IGI 

- -  x no. of  g c G such that gn ~ N. (47) 

So the condition (45) states that the number  of  group elements leaving n ~ N 
inside of  N has to be the same for any n ~ N. With reference to a fibre M (~), 
this condition then is, that the number  of  g ~  G such that w(gm) = w(m) has to 
be constant on M (~). 
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This is automatically true if A is a G-set as well, and if w:M-->A is a G-map, 
that is, if  

w(gm) = gw(m)  (48) 

holds for any g ~ G, m ~ M. Here we use the same shorthand notation as before, 
denoting by g8 the image of  a weight 8 ~ A under g ~ G. So let w be a G-map 
onto the G-set A. Then 

w(gm) = w(m)<=>gw(m) = w(m) (49) 

i.e. the number of  g E G such that w(gm) = w(m) reduces to the stabilizer order 

Ia~l for any m ~ M (8), (50) 

and the constant ratio in (45) turns out to be 

IG~I 1 
[G[ [ O~(8)1" (51) 

Moreover, the closures of  fibres are given by 

G [ M  ~8)] = {m ~ M I w ( m )  e O~(8)}. (52) 

Summarizing, we have obtained a generalization of the weighted Cauchy-  
Frobenius Lemma. 

Lemma (C,-F., generalized weighted version). Let M be a G-set, and let w: M--> A 
be a weight function such that the number of  g ~ G with w(gm) = w(m) is constant 
on each of  the fibres M (~), 8 ~ A. Denote these constant numbers by z( 8). Then 

1 
- -  • ~ w ( m ) =  ~ a(8)  8, 

where the coefficients are given by 

z(~) 
a(8) = - ~ •  no. of  orbits in G[M(8)]. 

In particular, let A be a G-set s well, and let w be a G-map. Then the coefficients 
a(8) are constant on the orbits of  A. For any such orbit l-l, and a weight 8 ~ f l ,  

1 
a(8) =-~[ xno. of  orbits in w-Ill-l], 

where w-I[lI] denotes the set of  m ~ M with w(m) ~ l-l. 

So, also in this quite more general situation, the coefficient of a weight in the 
average sum of  fixed point weights, provides us with an orbit number. We apply 
this result to type III actions, where a group G acts on a set L e of  mappings by 
acting on domain and range simultaneously, 

g :  ~0 v---> A g o  ~0 o ,r/'g I. (53) 
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As before, we make use of the elements in L as indeterminates, as well, and we 
assign to each map ~: P- )  L its gross formula monomial 

w(q~) = 1~ q~(i)= 1-[ x~(X) ,  (54) 
i c P  X ~ I  

where J~ is the content of ~, i.e. J~(X) is the number of sites i s P such that 
~( i ) - -X.  This weight function w is readily seen to be a G-map to the set of 
monomials over L, where G acts according to 

g: 1-I x n(x)~" 1-I Ag(X) n(x). (55) 
X ~ L  X E L  

Alternatively, (p ~-~ J~ is a G-map to the set of functions from L to the nonnegative 
integers, where G acts by 

g: J~--~J o Ag I . (56) 

Now we have to evaluate the generating function 

1 
E r w(qQ. (57) 

fixed by g 

This is quite easily done by making use of the previous characterization of fixed 
points (from which the expression (22) for the fixed point numbers was derived), 
and of the very same interchange of sum and product that does the job in proving 
P61ya's theorem. In the appendix we show how to rearrange the sum of fixed 
point weights into the form 

2p~L [I ~p(i)= I'I I~ A~(X) (58) 
i ~ P  k ~ l  L ~ 1  

fixed by g \Akg(x)=x 

It displays the fact that g-invariant mappings are constructed cycle-by-cycle, by 
mapping the sites in each cycle of ~g to a specific set of ligands in a coherent 
fashion. The sum over the fixed points of a ~ enumerates the possible images for 
cycles of length k, while the product over all the cycles accounts for the composi- 
tions of these partial mappings. This formula is probably due to de Bruijn [11], 
who used it for quite a different purpose, namely to enumerate the Prlya patterns 
that are invariant with respect to a prescribed permutation of the ligand types. 
Let us now define a generalized gross formula to be an orbit of monomials over 
L. Analogously, a generalized content is an orbit of content functions on L. Both 
these notions are equivalent, of course, in the sense that 

[I X "(x), II X K(x) . . . .  (59) 
X ~ L  X a L  

is an orbit of monomials if and only if 

J, K , . . .  (60) 

constitute an orbit of content functions. These orbits are the natural substitute 
of gross formulas, when the group in question acts on the ligands as well, since 
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the content of  mappings in an orbit ranges precisely over an orbit of contents. 
Putting together the notion of generalized contents, the expression (58) for the 
sum of  fixed point weights, and our generalization of  the weighted Cauchy-  
Frobenius Lemma, results in the following 

Theorem (generalized power group enumeration). Let a group G act on L P by acting 
on P and L simultaneously, and let l~ be an orbit o f  content functions on L. The 
number o f  orbits in L P with generalized content 1) is obtained by summing over all 
the J ~ f~ the coefficients of  the monomiais 

II  x J(x) 
X a L  

in the generating function 

! y. I] Y. 
x ~ ( x ) = x  

These coefficients are the same for all the contents J ~ ~ ,  so it is sufficient to 
compute one of them and multiply by ]~]. 

Of course, this result can be generalized, in the same manner as the P61ya Theorem, 
by introducing weights on L, i.e. by replacing the indeterminates X ~  L by 
variables X that are allowed to coincide. De Bruijn's theorem is obtained by 
equating the weights of  ligand types within each G-orbit of  L, which results in 

k 
^ k  ]-[ , ~ ( X )  being replaced b y X  . (61) 

~,=1 

We will illustrate this enumeration scheme by means of distributions of arrows 
over the four corners of a square, with the symmetry group D,n. The arrows may 
have different lengths, and moreover they may point upward, down, clockwise, 
counter-clockwise, and to the center, respectively. 

u [ c 

For the sake of  simplicity, we restrict ourselves to arrows of  the same length; so 
our set of  ligand types is L = {u, d, r, l, c}. With the corners of  the square labeled 
clockwise from 1 to 4, the pairs (Ag, ~rg) of permutations hg on L, and % on 
P = {1, 2, 3, 4}, by which the group G = D4h acts on mappings from P to L are 
given in Table 1. 

From this table, the generating function for enumerating orbits of  mappings by 
generalized content is readily seen to be 

l [ ( u  +d @r Wl +c)4 W 2(u4 +d4 + r4 Wl4Fc 4) W(u2 +d2 +r2 +12 +c2) 2 

+2(2ud + 2rl + c2)2 + 2(2ud + 2rl + c2)c2 +(r  + l + c) 4 

+ 2 ( 2 u 2 d  2 + r 4 + l 4 + C 4) + (2ud + r 2 + 12 + c2)  2 

+ 2(2rl + u2 + d2 + c2)2 + 2(2rl + u2 + af + c2)( u + d + c)2]. 
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Table 1. 

Rotations about  
the main axis 

Rotations about 
the dihedral axes 

The horizontal refl. 
improper rotations 
about the main axis 
the inversion 

The vertical 
reflections 

(1)(2)(3)(4) 
(1234) 
(1432) 
(13)(24) 

(12)(34) 
(14)(23) 
(13)(2)(4) 
(24)(1)(3) 

(1)(2)(3)(4) 
(1234) 
(1432) 
(13)(24) 

(12)(34) 
(14)(23) 
(13)(2)(4) 
(24)(1)(3) 

(u)(d)(r)(l)(c) 
(u)(d)(r)(l)(c) 
(u)(d)(r)(1)(c) 
(u)(d)(r)(l)(c) 

(ud)(rt)(c) 
(ud)(rl)(c) 
(ud)(rl)(c) 
(ud)(rl)(c) 

(ud)(r)(l)(c) 
(ud)(r)(l)(c) 
(ud)(r)(1)(c) 
(ud)(r)(l)(c) 

(rl)(u)(d)(c) 
(rl)(u)(d)(c) 
(rl)(u)(d)(c) 
(rl)(u)(d)(c) 

Table 2. 

1. C 4 
2. //4, d 4 
3. r 4, 14 
4. c3 u, c3 d 
5. c3r, c31 
6. u3c, d3c 
7. r3c, 13c 
8. u3d, dau 
9. r31 13r 

10. uar, d3r, U3~ d31 
l l .  r3u, lau, rad, lad 
12. cEu 2, c2d 2 
13. cEr 2, cEl 2 
14. u2d 2 
15. r212 
16. u2r 2, d2r 2, u2/2, dEl 2 

17. cEud 
18. cErl 
19. cEur, cZdr, cEul, c2dl 
20. u2dc, d2uc 
21. r2lc, IErc 
22. u2rc, d2rc, u21c, dElc 
23. r2uc, IEuc, r2dc, lEdc 
24. u2dr, d2ur, u2dl, d2ul 
25. r21u, 12ru, r21d, lard 
26. u2rl, d2rl 
27. rEud, 12ud 
28. cudr, cudl 
29. clru, clrd 
30. udrl 

D4h D4 D4h D 4 stabilizer 
1 1 1 1 O4h 
1/2 1/2 1 1 C4v 
1/2 1/2 l 1 C4h 
1/2 1/2 1 1 C4~ 
1/2 1/2 1 1 C4h 
1/2 1/2 1 l C4v 
1/2 1/2 1 1 C4h 
1/2 1/2 1 1 C,,o 
1/2 1/2 1 1 C4h 
1/4 1/2 1 2 C 4 
1/4 1/2 1 2 C 4 
1 1 2 2 C4v 
1 1 2 2 C4h 
2 2 2 2 D4h 
2 2 2 2 D4h 
1/2 1 2 4 C 4 
2 3 2 3 D4h 
3 3 3 3 D4h 
3/4 3/2 3 6 C 4 
1 3 /2  2 3 C4v 
3/2 3/2 3 3 C4h 
3/4 3/2  3 6 C 4 
3/4 3/2 3 6 C 4 
3/4  3/2  3 6 C 4 
3/4  3/2 3 6 C 4 
3/2 3/2  3 3 C4v 
l 3 /2  2 3 C4h 
3/2 3 3 6 C4h 
2 3 4 6 C40 
3 5 3 5 D4h 
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There are altogether 70 gross formulas that fall into the 30 orbits given in Table 
2, in terms of monomials. The other five columns in this table display 

(i) the coefficients of monomials in the generating function for G = D4h 
(ii) the same for R =/94 
(iii) the numbers of D4h-orbits 
(iv) the numbers of D4-orbits 
(v) the stabilizers of monomials, to be used only later. 

There are, altogeher, 61 orbits with respect to D4h, and 90 for/)4,  as is readily 
confirmed by means of eqns. (23) and (20). 

~ [ 5 4 + 2  �9 5 + 5 2 + 2  �9 5 2 + 2  �9 5 

+ 3 4 + 2  �9 5 + 5 2 + 2  �9 5 2 + 2  �9 5 �9 3 2 ] = 6 1 ,  ( 6 3 )  

~ [ 5 ' + 2 . 5 + 5 2 + 2  �9 5 2 + 2  �9 5]=90. 

Let us check these results by drawing some pictures, where we make use of the 
fact that any G-orbit either contains two mirror image chiral R-orbits or a single 

14. u 2 d  a 

17. c2cd  

19. c 2 u ~ . . .  

20. u2 dc, . . . 

21. r 2 / c , . . .  

28. c u d r , . . .  

29. ciru . . . .  

30. udr l  

X 

X X X 

• cc 

/ -7 -7 /T-7  f 7 7  
Ct Ct 0~ 

F 2 2  >2--7 
• i x x i 

2-7 FJ 
X X a. a 
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achiral one. So we will list, for some selected general contents, representatives 
of the G-orbits, and by classifying them to be either achiral (a)  or chiral (X), 
transversals of R-orbits could be obtained by adding mirror images of the chiral 
ones. 

If one is not so much interested in the complete series of orbit numbers but rather 
in single such numbers for particular generalized contents, some simplification 
may be possible. Consider e.g. the set of mappings with generalized content 
{c2ur, c2dr, c2ul, c2dl}. By the Cauchy-Frobenius Lemma, the number of orbits 
in this set equals the average number of fixed points. But the rotations about the 
main axis are the only elements in Dah , that can possible fix a mapping in this 
set, since the dihedral rotations as well as the improper rotations and reflections 
do not even fix the content of any such mapping. So, with f ( g )  denoting the 
number of maps fixed by g, 

1 1 
E f ( g ) =  E f ( g )  ID4hL ID4 1 . c4 

= ~(~--~41 g~c4f(g) } . (64) 

Hence there are four times as many C4-orbits as there are orbits with respect to 
Dab. Finally, the four contents c2ur, c2dr, c2ul, c2dl specify four distinct but 
equivalent C4-sets, and so we end up with the result that there are equally many 
Dah-orbits of content {c2ur, c2dr, c2ul, c2dl} and C4-0rbits of content c2ur, say. 
The latter number, however, is given by P61ya's theorem to be the coefficient of 
c2ur in the generating function 

I[(C +U +r)n+2(c4q-u4q-r 4) + (C2 + U2 + r2)2], (65) 

which then is readily computed to be three. In fact, the following theorem holds 

Theorem. Let a group G act on L P by acting on P and on L simultaneously. Let f l  
be a generalized content, i.e. an orbit o f  content functions, and let J ~ 12 be one of  
them. Denote by Gj its stabilizer. Then the set of  mappings with content J is a Gj-set, 
and there are equally many G-orbits of  generalized content fl and Gj-orbits of  
content J. 

In this manner, the generalized contents may be replaced by ordinary ones again, 
namely by a transversal from the orbits of content functions. The last column in 
the previous table specifies the stabilizers of contents for our example. Four groups, 
Dah, C4~, Cnh, and C4 occur, which fix c/ c, u, d /  c, r, l/ c, u, d, r, I respectively. So 
we have, for example, 

ZD4h(U2rl, d2rl) = Zc4~(u2rl), 

zo4, ( r2ud, 12ud) = Zc4~ ( r2ud). 
(66) 

Instead of proving the theorem above we wish to present a somewhat stronger 
result to be used in "constructive combinatorics", that is, for the purpose of 
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constructing transversals (systems of  representatives) of  orbits instead of merely 
counting them. Let M and N be G-sets, and let w: M--> N be a G-map,  i.e. for 
any g � 9  G, m e  M 

w(gm) = gw(m).  (67) 

For any orbit B of N, denote by w-~[B] the set of  elements m �9 M with w(m) �9 B, 

w-l[B] :  = {m ~ M l w ( m )  �9 B}. (68) 

Any such set w-l iB]  is a G-subset  of  M, since w ( m ) ~  B implies w(gm)= 
gw(m) ~ B. In case that w is surjective, all the w-l iB]  are non-empty,  and they 
constitute a decomposi t ion of  M into G-subsets. Since 

Jm w := {n = w(m)lm �9 M}  (69) 

is in turn a G-subset  of  N, we may restrict ourselves to this subset, in other 
words, we can assume w to be a map onto N. Accordingly, the decomposit ion 
of  N into orbits B induces a decomposit ion of  M into G-subsets w-l[B],  which 
then may be decomposed into orbits, separately. Now we observe that, for any 
orbit A in w-l iB],  the images w(a) of  its elements run through B as a runs 
through A. So any such orbit A has at least one element in the fibre of  an arbitrary 
b � 9  

w- l (b)  := {m �9 M I w ( m )  = b}. (70) 

On the other hand, two such preimages are in the same G-orbit  if and only if 
they are already in the same Gb-orbit, where Gb is the stabilizer of  b �9 B. Namely, 
suppose that m and m'  are in the same G-orbit ,  that is, m'  may be expressed as 
m'= gm with some g � 9  G. Suppose that w ( m ) =  w(m' )=  b. Then it follows from 
b = w(m')  = w(gm) = gw(m) = gb, that any such g �9 G that takes m into m', has 
to be in the stabilizer Gb. Since the fibre w-~(b) is a Gb-set, of  course, our result 
may be summarized as follows. 

Theorem. Let M and N be G-sets, and let w be a G-map from M onto N. Let B 
be any G-orbit in N, and b �9 B an arbitrary element. Then, any transversal from 
the Gb-orbits in w- l (b)  is a transversal from the G-orbits of  w- l iB]  as well. In 
particular, there are as many Gb-orbits in w-l(b)  as there are G-orbits in w-liB].  

By means of  this result, the decomposit ion of  a given G-set M into its orbits 
can be facilitated, if a G-map  w onto another  G-set N is available, and if N is 
easier decomposed into orbits as M is. After computat ion of  a transversal T = {b} 
from the G-orbits in N, as an intermediate step, the fibres w-l(b)  are decomposed 
into Gb-orbits, each, and a transversal Tb is chosen from these orbits. Then 

[_J Tb (71) 
b e T  

is a transversal from the G-orbits of  M. 

As noted before, assigning to a map its content function or its gross formula 
monomial  is a G - m a p  from M = L P to the sets of  content functions on L, and 
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of monomials over L, respectively, on which G acts in the obvious fashion. The 
previous assertion then follows immediately. 

As a final remark, we should like to mention that bilateral classes [13] may be 
employed in counting "de Bruijn-patterns" in the very same manner as double 
cosets are used to enumerate "P61ya-patterns" [15]. For the number of  bilateral 
classes, closed form expressions similar to those for double cosets are available, 
which may then be used instead of  generating functions. This can be quite 
profitable in case that only a few orbit numbers are required. 

Appendix: Evaluation of weighted fixed point sums 

With reference to formula (58) we alluded to a well-known trick which is essential 
to evaluating sums of  fixed points weights for multiplicative weight functions, 
namely by interchanging summation and multiplication. We will now indicate 
how such procedures work, in general. For this purpose, let A and B be finite 
sets, and let each a ~ A be associated with a specific weight function wa on B. 
We assume again that weights can be added and multiplied commutatively. Assign 
to each map ~0 from A to B the product of its images according to 

0 ~-~ I-I wa(qJ(a)). (72) 
a~A 

We wish to evaluate sums of these objects, where we restrict the mappings from 
A to B by assigning to each a c A a specific subset B, ~_ B of admissable images. 
The result then is 

I~t EAEI~ l~I W a ( ~ b ( a ) ) =  I'I 2 w a ( b ) .  (73) 
a~A a~A b,~B a 

qJ(a)~B~ 

It is quite easily verified by arbitrarily ordering the elements in A, and by 
identifying mappings from A to B with their tuples of images. Putting n = IAI, 
w~ = wa,, B~ = Ba,, the previous result is obtained as follows. 

~, [I w,~(ql(a))= E Y~ " ' "  2 w , ( b , ) w 2 ( b 2 ) " ,  w,,(b,,) 
t~EBA aEA blEB I b2EB 2 bnEB n 

O(a)cBa 

= I1 2 wo(b). 
a ~ A  b ~ B  a 

Formula (58) is immediately recovered by choosing 

A = collection of cycles of 7rg 

B = L  

Ba = subset of  fixed points of 2t k, for cycle length k 

w a ( X )  = X ; t ~ ( X ) ; t Z ( x )  . . .  Ak-~(X), for cycle length k, 

(74) 
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wh i l e  t he  P61ya T h e o r e m  refers  to 

Ba = B = L, fo r  any  cyc le  o f  7r~ 

w a ( X )  = X k, fo r  cyc le  l e n g t h  k. 

W. H~isselbarth 
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